Abstract

The concept of isoreticular chemistry has become a core principle in metal-organic framework (MOF) materials. Isoreticular chemistry has shown that organic ligands of different sizes, but with a common geometry/symmetry can be used to generate MOFs of related topologies, but with expanded pore sizes and volumes. In this report, polymer-MOF hybrid materials (polyMOFs) with a UiO (UiO = University of Oslo) architecture are shown to adhere to the principle of isoreticular expansion, generating polyMOFs with large surface areas and enhanced stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.