Abstract
Alzheimer’s disease (AD) is a multifactorial health problem widespread over the world. Regarding the historical importance of the alkaloids in the central nervous system pharmacology they remain as promising drug candidates against AD. Seven alkaloids from Amaryllidaceae and Fabaceae were evaluated in vivo, in vitro and in silico targets related to the AD pathophysiology. Erythraline and erysodine showed the greatest potential compared to Memantine, a drug currently used in AD therapy, by delaying the Aβ1-42-induced paralysis in the transgenic strain CL2006 Caenorhabditis elegans, an alternative model to assess the impairment of beta-amyloid peptide deposition. The in vitro inhibition of the acetylcholinesterase was observed for the first time for Erythrina alkaloids; however Lycorine was the most active. Docking simulation contributed to comprehend this potential by showing a hydrophobic interaction between acetylcholinesterase and Lycorine in the amino acid residue TRP 84 as well as hydrogen bonds with TRY 121 and ASP 72.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.