Abstract

In this work, we examine the isoptic surfaces of line segments in the S2×R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extbf{S}^2\\!\ imes \\!\ extbf{R}$$\\end{document} and H2×R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extbf{H}^2\\!\ imes \\!\ extbf{R}$$\\end{document} geometries, which are from the 8 Thurston geometries. Based on the procedure first described in Csima and Szirmai (Results Math 78:194-19, 2023), we are able to give the isoptic surface of any segment implicitly. We rely heavily on the calculations published in Szirmai (Bul Acad Ştiinţe Repub Mold Mat 2:44–61, 2020; Q J Math 73:477–494, 2022). As a special case, we examine the Thales sphere in both geometries, which are called Thaloid. In our work we will use the projective model of S2×R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extbf{S}^2\\!\ imes \\!\ extbf{R}$$\\end{document} and H2×R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extbf{H}^2\\!\ imes \\!\ extbf{R}$$\\end{document} described by Molnár (Beitr Algebra Geom 38:261–288, 1997).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call