Abstract

In the present study, we investigated the mechanism by which isoproterenol hyperpolarises membrane potential (MP) in Sertoli cells from seminiferous tubules of 15-day-old rat testes. Modification of MP and resistance (R0) was analysed using conventional intracellular glass microelectrodes. Isoproterenol (2 x 10(-6) M) induced an immediate and significant hyperpolarisation in the Sertoli-cell membrane. The beta2-AR antagonist, butoxamine (1 x 10(-6) M), nullified isoproterenol action. The effect of the beta1 antagonist, metoprolol (1 x 10(-6) M), was light and non-significant. Sulphonylurea glibenclamide inhibition of the K+(ATP) channels suppressed isoproterenol action, and testosterone, while depolarising Sertoli-cell MP closing the K+(ATP) channels through the PLC/PIP2 pathway, reduced beta-AR agonist-induced hyperpolarisation. Also, polycations LaCl3 and spermine reversed isoproterenol's hyperpolarisation effect, probably depolarising the membrane potential through ionic interaction neutralising the action of isoproterenol on K+(ATP) channels. Adenylate cyclase agonist forskolin (0.1 microM) rapidly hyperpolarised Sertoli-cell MP, mimicking the isoproterenol effect. These effects indicate that isoproterenol's action on K+(ATP) channel probably involves the known signalling cascade beta-AR/Gs/AC/cAMP/PKA. These results suggest that the isoproterenol-induced hyperpolarisation is mediated by the opening of K+(ATP) channels in Sertoli cells. This beta-adrenergic hyperpolarisation might play a physiological role in the modulation of MP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call