Abstract

Heme oxygenase (HO)-1 is a well-known cytoprotectant against oxidative stress and exhibits an antiproliferative effect in vascular smooth muscle cells (VSMCs). The purpose of the present study was to test whether isoproterenol, one of the synthetic catecholamines having beta-adrenergic activity, affected angiotensin II (Ang II)-induced cell proliferation and reactive oxygen species (ROS) production. Also, the presumptive underlying signaling pathways in VSMCs were studied. Aortic VSMCs from 11-week-old male Sprague-Dawley rats were used. Isoproterenol dose-dependently increased HO-1 expression through beta(2)-adrenoceptor (AR) and protein kinase A (PKA) pathway, and isoproterenol concentration-dependently increased beta(2)-AR mRNA expression. Isoproterenol attenuated Ang II-induced cell proliferation, as evidenced by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay. This effect of isoproterenol was inhibited by pretreatment of the cells with beta(2)-AR antagonist butoxamine, PKA inhibitor H-89 and HO inhibitor Tin Protoporphyrin IX (SnPP IX), respectively. Isoproterenol inhibited phosphorylation level of Ang II-induced extracellular signal-regulated kinase (ERK1/2). Isoproterenol significantly inhibited Ang II-induced ROS production through the ERK1/2 pathway. These findings suggest that isoproterenol, via induction of HO-1, inhibits Ang II-stimulated proliferation and ROS production in cultured VSMCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.