Abstract

Isopropyl 3-deoxy-α-D-ribo-hexopyranoside (isopropyl 3-deoxy-α-D-glucopyranoside), C9H18O5, (I), crystallizes from a methanol-ethyl acetate solvent mixture at room temperature in a 4C1 chair conformation that is slightly distorted towards the C5SC1 twist-boat form. A comparison of the structural parameters in (I), methyl α-D-glucopyranoside, (II), α-D-glucopyranosyl-(1→4)-D-glucitol (maltitol), (III), and 3-deoxy-α-D-ribo-hexopyranose (3-deoxy-α-D-glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)-(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I)c-(IV)c. Exocyclic hydroxymethyl groups adopt the gauche-gauche (gg) conformation (H5 anti to O6) in (I) and (III), and the gauche-trans (gt) conformation (C4 anti to O6) in (II) and (IV). The O-glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing β-(1→4) linkages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call