Abstract

Isoprenylcysteine carboxyl methyltransferase (ICMT) catalyzes the post-translational methylation of C-terminal cysteines of isoprenylated proteins, including small G-proteins and the γ-subunits of heterotrimeric G-proteins. It is widely felt that carboxymethylation promotes efficient membrane association of the methylated proteins and specific protein-protein interactions. In the current study, we tested the hypothesis that ICMT-mediated carboxymethylation of specific proteins (e.g., Rac1) plays a regulatory role in glucose-stimulated insulin secretion (GSIS). Western blot analysis indicated that lCMT is expressed and predominantly membrane associated in INS 832/13 β-cells. siRNA-mediated knockdown of endogenous expression of ICMT markedly attenuated glucose, but not KCl-induced insulin secretion. These findings were further supported by pharmacological observations, which suggested a marked reduction in glucose-, but not KCl-stimulated insulin secretion by acetyl farnesyl cysteine (AFC), a selective inhibitor of ICMT. In addition, glucose-induced Rac1 activation, a hallmark signaling step involved in glucose-stimulated insulin secretion, was markedly inhibited following pharmacological (AFC) or molecular biological (siRNA-ICMT) inhibition of ICMT. Lastly, we also noticed a marked reduction in glucose-induced acute increase in the generation of reactive oxygen species in INS 832/13 cells pre-treated with AFC or transfected with siRNA-ICMT. Together, these data suggest that ICMT regulates glucose-induced Rac1 activation, generation of reactive oxygen species and insulin secretion in pancreatic β-cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call