Abstract

Isoprenyl diphosphate synthases are ubiquitous enzymes that catalyze the basic chain-elongation reaction in the isoprene biosynthetic pathway. Pairwise sequence comparisons were made for 6 farnesyl diphosphate synthases, 6 geranylgeranyl diphosphate synthases, and a hexaprenyl diphosphate synthase. Five regions with highly conserved residues, two of which contain aspartate-rich DDXX(XX)D motifs found in many prenyltransferases, were identified. A consensus secondary structure for the group, consisting mostly of alpha-helices, was predicted for the multiply aligned sequences from amino acid compositions, computer assignments of local structure, and hydropathy indices. Progressive sequence alignments suggest that the 13 isoprenyl diphosphate synthases evolved from a common ancestor into 3 distinct clusters. The most distant separation is between yeast hexaprenyl diphosphate synthetase and the other enzymes. Except for the chromoplastic geranylgeranyl diphosphate synthase from Capsicum annuum, the remaining farnesyl and geranylgeranyl diphosphate synthases segregate into prokaryotic/archaebacterial and eukaryotic families.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.