Abstract
Abstract The physical properties of highly polymerized substances, which are composed of fiber molecules, depend on the lengths of the chains of these fiber molecules. Thus tensile strength, elasticity, tendency to swell in solvents, and above all viscosity, are dependent on the length of chain of the particular substance. Among the substances, the properties of which vary thus, are rubber, gutta-percha, and balata. Since the length of fiber molecules can vary within wide limits, such physical properties as those mentioned above show wide variations in the case of rubber, gutta-percha, and balata. This is evident for example by a comparison of the properties of unmasticated rubber, which consists of long fiber molecules of a degree of polymerization of 2000, with the properties of masticated rubber, the greatly dissociated molecules of which have a degree of polymerization of only 500. The determination of the length of the fiber molecules is therefore of great importance in the case of highly polymerized substances. It has already been proved in past experiments with members of a series of homologous polymers, i. e., of substances the macromolecules of which have the same basic structure and differ only in length, that the molecular weights can be determined from viscosity measurements. This determination is based on the fact that there is a general relation between the specific viscosity and the length of the dissolved molecules, which can be expressed by the formula:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.