Abstract

In a 2006 LLNL internal report, a study of DEB and DPB based hydrogen getter materials was described. The materials, consisting of DEB or DPB physically blended with amorphous carbon on which palladium nanoparticle catalyst was supported, were studied during the course of reaction with fixed aliquots of hydrogen gas in order to observe their hydrogen consumption capacities as a function of ambient hydrogen pressure. The experiments demonstrated that the getter capacity was directly proportional to hydrogen fugacity: the lower the initial hydrogen pressure, the lower the resultant capacity at correspondingly low steady-state pressures. In the course of these experiments, further interesting observations were made of DEB and DPB reduction by hydrogen gas that painted a picture of a complicated reaction mechanism. To summarize, it was determined that reaction rate was controlled partly by diffusion of the organic diacetylene toward the catalyst surface. The results indicated this diffusion was in turn enhanced by phase changes in the course of the reaction that result in a liquid phase of the getter, and also by the heat of reaction, itself being proportional to initial reaction rate. However, these same two terms were speculated to have negative impacts on the net reaction kinetics, as well. It was suggested the liquid phase served to block gas access, and that excessively fast initial rates limited rate and capacity at later times by creating a depletion zone of reactant around the catalyst. Because of the nature of the experiments, whereby both hydrogen pressure and getter activity were changing in time, actual kinetic information could not be gathered. Knowledge of the reaction rate characteristics of these materials as a function of pressure and temperature is crucial to understanding the overall behavior of this material in service. Further, direct observation of the reaction rate can permit estimates of the diffusion of the reactive species. The present work centers on the development of an understanding of the kinetics for the hydrogenation of DPB and DEB as a function of temperature and pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.