Abstract
An isophote curve consists of a locus of surface points whose normal vectors make a constant angle with a fixed vector (the axis). In this paper, we define an isophote curve on a spacelike surface in Lorentz–Minkowski space [Formula: see text] and then find its axis as timelike and spacelike vectors via the Darboux frame. Besides, we give some relations between isophote curves and special curves on surfaces such as geodesic curves, asymptotic curves or lines of curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.