Abstract

We obtain isoperimetric stability theorems for general Cayley digraphs on $\mathbb{Z}^d$. For any fixed $B$ that generates $\mathbb{Z}^d$ over $\mathbb{Z}$, we characterise the approximate structure of large sets $A$ that are approximately isoperimetric in the Cayley digraph of $B$: we show that $A$ must be close to a set of the form $kZ \cap \mathbb{Z}^d$, where for the vertex boundary $Z$ is the conical hull of $B$, and for the edge boundary $Z$ is the zonotope generated by $B$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.