Abstract

<abstract><p>In this paper we study infinite isoperimetric clusters. An infinite cluster $ {\bf{E}} $ in $ \mathbb R^d $ is a sequence of disjoint measurable sets $ E_k\subset \mathbb R^d $, called regions of the cluster, $ k = 1, 2, 3, \dots $ A natural question is the existence of a cluster $ {\bf{E}} $ with given volumes $ a_k\ge 0 $ of the regions $ E_k $, having finite perimeter $ P({\bf{E}}) $, which is minimal among all the clusters with regions having the same volumes. We prove that such a cluster exists in the planar case $ d = 2 $, for any choice of the areas $ a_k $ with $ \sum \sqrt a_k < \infty $. We also show the existence of a bounded minimizer with the property $ P({\bf{E}}) = \mathcal H^1({\tilde\partial} {\bf{E}}) $, where $ {\tilde\partial} {\bf{E}} $ denotes the measure theoretic boundary of the cluster. Finally, we provide several examples of infinite isoperimetric clusters for anisotropic and fractional perimeters.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.