Abstract
We provide isoperimetric Szegö–Weinberger type inequalities for the first nontrivial Neumann eigenvalue μ1(Ω) in Gauss space, where Ω is a possibly unbounded domain of RN. Our main result consists in showing that among all sets Ω of RN symmetric about the origin, having prescribed Gaussian measure, μ1(Ω) is maximum if and only if Ω is the Euclidean ball centered at the origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.