Abstract

We establish lower estimates for an integral functional$$\int\limits_\Omega f(u(x), \nabla u(x)) \, dx ,$$where \(\Omega\) -- a bounded domain in \(\mathbb{R}^n \; (n \geqslant 2)\), an integrand \(f(t,p) \, (t \in [0, \infty),\; p \in \mathbb{R}^n)\) -- a function that is \(B\)-measurable with respect to a variable \(t\) and is convex and even in the variable \(p\), \(\nabla u(x)\) -- a gradient (in the sense of Sobolev) of the function \(u \colon \Omega \rightarrow \mathbb{R}\). In the first and the second sections we utilize properties of permutations of differentiable functions and an isoperimetric inequality \(H^{n-1}( \partial A) \geqslant \lambda(m_n A)\), that connects \((n-1)\)-dimensional Hausdorff measure \(H^{n-1}(\partial A )\) of relative boundary \(\partial A\) of the set \(A \subset \Omega\) with its \(n\)-dimensional Lebesgue measure \(m_n A\). The integrand \(f\) is assumed to be isotropic, i.e. \(f(t,p) = f(t,q)\) if \(|p| = |q|\).Applications of the established results to multidimensional variational problems are outlined. For functions \( u \) that vanish on the boundary of the domain \(\Omega\), the assumption of the isotropy of the integrand \( f \) can be omitted. In this case, an important role is played by the Steiner and Schwartz symmetrization operations of the integrand \( f \) and of the function \( u \). The corresponding variants of the lower estimates are discussed in the third section. What is fundamentally new here is that the symmetrization operation is applied not only to the function \(u\), but also to the integrand \(f\). The geometric basis of the results of the third section is the Brunn-Minkowski inequality, as well as the symmetrization properties of the algebraic sum of sets.

Highlights

  • a function that is B-measurable with respect to a variable t

  • For functions u that vanish on the boundary of the domain Ω

  • an important role is played by the Steiner

Read more

Summary

Перестановки функций

Начало теории перестановок относится к работам Я. Обозначим через J(λ) класс областей Ω, для которых неравенство (1) верно с функцией λ(·), непрерывной на [0, a], возрастающей и положительной на (0, a/2] и λ(s) = λ(a−s). Пусть D - открытое множество в Rn, u – вещественная функция класса C1(D), причем ∇1u(x) > 0 ∀x ∈ D; Bt := {x ∈ D, |u(x)| = t}, g ∈. Тогда для почти всех значений t 0 функция ∇1u интегрируема по Bt относительно (n−1)-мерной меры Хаусдорфа dHn−1, соответствующий интеграл g(x) dHn−1 ∇1u(x). Поскольку ui – функция класса C∞(Ω), то почти при всех t > 0 множество Bti есть (n − 1)-мерное многообразие класса C∞. Существует такая неотрицательная функция α(·) класса L[0, ∞), что для любого измеримого по Борелю множества B ⊂ R+ справедливо равенство [5]. Для любого натурального числа N функция γN (t) = min{γ(t), N } измерима по Борелю и ограничена сверху. Переходя к пределу при N → ∞, получаем неравенство (3)

Интегральные неравенства
Симметризации функций и интегральные неравенства
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call