Abstract

Nudix hydrolases typically catalyze the hydrolysis of nucleoside diphosphate linked to moiety X and yield nucleoside monophosphate and X-phosphate, while some of them hydrolyze a terminal diphosphate group of non-nucleosidic compounds and convert it into a phosphate group. Although the number of Nudix hydrolases is usually limited in archaea comparing with those in bacteria and eukaryotes, the physiological functions of most archaeal Nudix hydrolases remain unknown. In this study, a Nudix hydrolase family protein, MM_2582, from the methanogenic archaeon Methanosarcina mazei was recombinantly expressed in Escherichia coli, purified, and characterized. This recombinant protein shows higher hydrolase activity toward isopentenyl diphosphate and short-chain prenyl diphosphates than that toward nucleosidic compounds. Kinetic studies demonstrated that the archaeal enzyme prefers isopentenyl diphosphate and dimethylallyl diphosphate, which suggests its role in the biosynthesis of prenylated flavin mononucleotide, a recently discovered coenzyme that is required, for example, in the archaea-specific modified mevalonate pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.