Abstract
AbstractLet K and S be locally compact Hausdorff spaces and let X be a strictly convex Banach space of finite dimension at least 2. In this paper, we prove that if there exists an isomorphism T from onto satisfying urn:x-wiley:0025584X:media:mana201800038:mana201800038-math-0007then K and S are homeomorphic. Here denotes the Schäffer constant of X. Even for the classical cases , and , this result is the X‐valued Banach–Stone theorem via isomorphism with the largest distortion that is known so far, namely . On the other hand, it is well known that this result is not true for , even though K and S are compact Hausdorff spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.