Abstract

We extend the concept of graph isomorphisms to multilayer networks with any number of “aspects” (i.e., types of layering). In developing this generalization, we identify multiple types of isomorphisms. For example, in multilayer networks with a single aspect, permuting vertex labels, layer labels, and both vertex labels and layer labels each yield different isomorphism relations between multilayer networks. Multilayer network isomorphisms lead naturally to defining isomorphisms in any of the numerous types of networks that can be represented as a multilayer network, and we thereby obtain isomorphisms for multiplex networks, temporal networks, networks with both of these features, and more. We reduce each of the multilayer network isomorphism problems to a graph isomorphism problem, where the size of the graph isomorphism problem grows linearly with the size of the multilayer network isomorphism problem. One can thus use software that has been developed to solve graph isomorphism problems as a practical means for solving multilayer network isomorphism problems. Our theory lays a foundation for extending many network analysis methods—including motifs, graphlets, structural roles, and network alignment—to any multilayer network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.