Abstract
Abstract Let ( 𝔤 , 𝗀 ) {\mathfrak{g},\mathsf{g})} be a pair of complex finite-dimensional simple Lie algebras whose Dynkin diagrams are related by (un)folding, with 𝗀 {\mathsf{g}} being of simply-laced type. We construct a collection of ring isomorphisms between the quantum Grothendieck rings of monoidal categories 𝒞 𝔤 {\mathscr{C}_{\mathfrak{g}}} and 𝒞 𝗀 {\mathscr{C}_{\mathsf{g}}} of finite-dimensional representations over the quantum loop algebras of 𝔤 {\mathfrak{g}} and 𝗀 {\mathsf{g}} , respectively. As a consequence, we solve long-standing problems: the positivity of the analogs of Kazhdan–Lusztig polynomials and the positivity of the structure constants of the quantum Grothendieck rings for any non-simply-laced 𝔤 {\mathfrak{g}} . In addition, comparing our isomorphisms with the categorical relations arising from the generalized quantum affine Schur–Weyl dualities, we prove the analog of Kazhdan–Lusztig conjecture (formulated in [D. Hernandez, Algebraic approach to q , t q,t -characters, Adv. Math. 187 2004, 1, 1–52]) for simple modules in remarkable monoidal subcategories of 𝒞 𝔤 {\mathscr{C}_{\mathfrak{g}}} for any non-simply-laced 𝔤 {\mathfrak{g}} , and for any simple finite-dimensional modules in 𝒞 𝔤 {\mathscr{C}_{\mathfrak{g}}} for 𝔤 {\mathfrak{g}} of type B n {\mathrm{B}_{n}} . In the course of the proof we obtain and combine several new ingredients. In particular, we establish a quantum analog of T-systems, and also we generalize the isomorphisms of [D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. reine angew. Math. 701 2015, 77–126, D. Hernandez and H. Oya, Quantum Grothendieck ring isomorphisms, cluster algebras and Kazhdan–Lusztig algorithm, Adv. Math. 347 2019, 192–272] to all 𝔤 {\mathfrak{g}} in a unified way, that is, isomorphisms between subalgebras of the quantum group of 𝗀 {\mathsf{g}} and subalgebras of the quantum Grothendieck ring of 𝒞 𝔤 {\mathscr{C}_{\mathfrak{g}}} .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.