Abstract

AbstractThe complexity of the isomorphism problem for regular trees, regular linear orders, and regular words is analyzed. A tree is regular if it is isomorphic to the prefix order on a regular language. In case regular languages are represented by NFAs (DFAs), the isomorphism problem for regular trees turns out to be EXPTIME-complete (resp. P-complete). In case the input automata are acyclic NFAs (acyclic DFAs), the corresponding trees are (succinctly represented) finite trees, and the isomorphism problem turns out to be PSPACE-complete (resp. P-complete). A linear order is regular if it is isomorphic to the lexicographic order on a regular language. A polynomial time algorithm for the isomorphism problem for regular linear orders (and even regular words, which generalize the latter) given by DFAs is presented. This solves an open problem by Ésik and Bloom. A long version of this paper can be found in [18].KeywordsPolynomial TimeLinear OrderRegular ExpressionPolynomial Time AlgorithmRegular LanguageThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.