Abstract
AbstractWe study the isomorphism relation on Borel classes of locally compact Polish metric structures. We prove that isomorphism on such classes is always classifiable by countable structures (equivalently: Borel reducible to graph isomorphism), which implies, in particular, that isometry of locally compact Polish metric spaces is Borel reducible to graph isomorphism. We show that potentially $\boldsymbol {\Pi }^{0}_{\alpha + 1}$ isomorphism relations are Borel reducible to equality on hereditarily countable sets of rank $\alpha $ , $\alpha \geq 2$ . We also study approximations of the Hjorth-isomorphism game, and formulate a condition ruling out classifiability by countable structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.