Abstract
This paper presents necessary and sufficient conditions under which isomorphism of endomorphism rings of additive groups of arbitrary associative rings with 1 implies isomorphism of these rings. For a certain class of Abelian groups, we present a criterion which shows when isomorphism of their endomorphism rings implies isomorphism of these groups. We demonstrate necessary and sufficient conditions under which an arbitrary ring is the endomorphism ring of an Abelian group. This solves Problem 84 in L. Fuchs’ “Infinite Abelian Groups.”
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.