Abstract

We study the solution of the Schlesinger system for the 4-point $\mathfrak{sl}_N$ isomonodromy problem and conjecture an expression for the isomonodromic $\tau$-function in terms of 2d conformal field theory beyond the known $N=2$ Painlev\'e VI case. We show that this relation can be used as an alternative definition of conformal blocks for the $W_N$ algebra and argue that the infinite number of arbitrary constants arising in the algebraic construction of $W_N$ conformal block can be expressed in terms of only a finite set of parameters of the monodromy data of rank $N$ Fuchsian system with three regular singular points. We check this definition explicitly for the known conformal blocks of the $W_3$ algebra and demonstrate its consistency with the conjectured form of the structure constants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.