Abstract

This paper generalizes the Aleksandrov problem, the Mazur-Ulam theorem and Benz theorem on n-normed spaces. It proves that a one-distance preserving mapping is an n- isometry if and only if it has the zero-distance preserving property, and two kinds of n-isometries on n-normed spaces are equivalent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.