Abstract
It is shown that a topological group G is topologically isomorphic to the isometry group of a (complete) metric space iff G coincides with its G-delta-closure in the Rajkov completion of G (resp. if G is Rajkov-complete). It is also shown that for every Polish (resp. compact Polish; locally compact Polish) group G there is a complete (resp. proper) metric d on X inducing the topology of X such that G is isomorphic to Iso(X,d) where X = l_2 (resp. X = Q; X = Q\{point} where Q is the Hilbert cube). It is demonstrated that there are a separable Banach space E and a nonzero vector e in E such that G is isomorphic to the group of all (linear) isometries of E which leave the point e fixed. Similar results are proved for an arbitrary complete topological group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.