Abstract

In the recent paper \cite{Hos}, surjective isometries, not necessarily linear, $T: {\rm AC}(X,E) \longrightarrow {\rm AC}(Y,F)$ between vector-valued absolutely continuous functions on compact subsets $X$ and $Y$ of the real line, has been described. The target spaces $E$ and $F$ are strictly convex normed spaces. In this paper, we assume that $X$ and $Y$ are compact Hausdorff spaces and $E$ and $F$ are normed spaces, which are not assumed to be strictly convex. We describe (with a short proof) surjective isometries $T: (A,\|\cdot\|_A) \longrightarrow (B,\|\cdot\|_B)$ between certain normed subspaces $A$ and $B$ of $C(X,E)$ and $C(Y,F)$, respectively. We consider three cases for $F$ with some mild conditions. The first case, in particular, provides a short proof for the above result, without assuming that the target spaces are strictly convex. The other cases give some generalizations in this topic. As a consequence, the results can be applied, for isometries (not necessarily linear) between spaces of absolutely continuous vector-valued functions, (little) Lipschitz functions and also continuously differentiable functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.