Abstract

The rank distance was introduced by E.M. Gabidulin (see Probl. Pered. Inform., vol.21, p.1-12, 1985). He determined an upper bound for the minimum rank distance of a code. Moreover, he constructed a class of codes which meet this bound: the so-called Gabidulin codes. We first characterize the linear and semilinear isometries for the rank distance. Then we determine the isometry group and the permutation group of Gabidulin codes of any length. We give a characterization of equivalent Gabidulin codes. Finally, we prove that the number of equivalence classes of Gabidulin codes is exactly the number of equivalence classes of vector spaces of dimension n contained in GF(p/sup m/) under some particular relations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.