Abstract

In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces A and B of $$C_0(X,E)$$ and $$C_0(Y,F)$$ where X and Y are locally compact Hausdorff spaces and E and F are normed spaces, not assumed to be either strictly convex or complete. We show that for a class of normed spaces F satisfying a newly defined property related to their T-sets, such an isometry is a (generalized) weighted composition operator up to a translation. Then we apply the result to study surjective isometries between A and B whenever A and B are equipped with certain norms rather than the supremum norm. Our results unify and generalize some recent results in this context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.