Abstract
This work deals with the structure of the isometry group of pseudo-Riemannian 2-step nilmanifolds. We study the action by isometries of several groups and we construct examples showing substantial differences with the Riemannian situation; for instance, the action of the nilradical of the isometry group does not need to be transitive. For a nilpotent Lie group endowed with a left-invariant pseudo-Riemannian metric, we study conditions for which the subgroup of isometries fixing the identity element equals the subgroup of isometric automorphisms. This set equality holds for pseudo-\(H\)-type Lie groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.