Abstract

Semiempirical calucaltions, at the PM 3 level, are used to geometrically optimize and determine the absolute energies (heats of formation) of a variety of C(20) isomers. Based on the geometrically optimized Cartesian coordinates of the ring and the bowl isomers, and the subsequent saddle-point calculation, a two-dimensional energy profile between these two isomers is generated. Performing geometry optimization on the Cartesian coordinates that correspond to energy minima within the ring-bowl profile, we have been able to identify several more isomers of C(20) that are predicted to be energitically stable. With these additional stable structures, we have identified pairs of isomers that lie adjacent to one another on the potential energy surface, as is evidenced by the form of their respective energy profiles. These adjacent pairs of isomers establish a step-wise transformation between the ring and the bowl. This process, which extends out over the three-dimensional surface, is predicted to require less energy than that of the direct, two-dimensional transformation predicted in the ring-bowl profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.