Abstract

Each subunit of the cation-selective members of the Cys-loop family of ligand-gated ion channels contains a conserved proline residue in the extracellular loop between the second and third transmembrane domains. In the mouse homomeric 5-hydroxytryptamine type 3A (5-HT(3)A) receptor, the effects of substitution of this proline by unnatural amino acids led to the suggestion that trans-cis isomerization of the protein backbone at this position is integral to agonist-induced channel opening [Nature (2005) vol. 438, pp. 248-252]. We explored the generality of this conclusion using natural amino acid mutagenesis of the homologous human 5-HT(3)A receptor. The conserved proline (P303) was substituted by either a histidine or tryprophan and the mutant receptors were expressed in Xenopus oocytes. These mutations did not significantly affect the magnitude of agonist-mediated currents, compromise channel gating by 5-HT or inhibition of 5-HT-induced currents by either picrotoxin or d-tubocurarine. The mutations did, however, result in altered dependence on extracellular Ca(2+) concentration and a 10-fold increase in the rate of receptor desensitization. These results demonstrate an important role for P303 in 5-HT(3)A receptor function but indicate that trans-cis isomerization at this proline is unlikely to be a general mechanism underlying the gating process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call