Abstract

Abstract The isomerization of n-pentane to generate high-quality blending components for clean gasoline was catalyzed by several amide-AlCl3-based ionic liquid (IL) analogs with various amides as donor molecules. The catalytic performance of these IL analogs was evaluated in a magnetic agitated autoclave operated in batch mode. IL analog based n-methylacetamide (NMA)-AlCl3 with the amide/AlCl3 molar ratio of 0.65 showed excellent performance toward n-pentane isomerization because 0.65NMA-1.0AlCl3 had a low viscosity and bidentate coordination structure. The influences of reaction time, reaction temperature, and stirring speed on the catalytic performance were also investigated. Optimal reaction conditions comprised the reaction time of 1 h, the reaction temperature of 40 °C, and the stirring speed of 1500 r·min−1. Under optimal condition, the n-C5 conversion, research octane number (RON) increment, total liquids yield, and isoparaffin yield in isomerized oil were 56.80%, 13.51, 89.90 wt%, and 44.32 wt%, respectively. A new mathematical model was constructed to predict the relationships among RON increment, RON increment/n-C5 conversion ratio, and n-C5 conversion. The new model indicated that an appropriate conversion per pass of n-C5 did not exceed 50%–55%. Various cycloparaffin additives were used to improve the catalytic performance of 0.65NMA-1.0AlCl3. The n-C5 conversion increased from 56.80% to 67.32%. The RON increment, total liquids yield, and isoparaffin yield reached 17.83, 97.36 wt%, and 63.74 wt%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.