Abstract
Energetics, structural features, polarity, and melting transitions in water clusters containing up to eight molecules were studied using ab initio methods and empirical force field models. Our quantum approach was based on density functional theory performed at the generalized gradient approximation level. For the specific case of (H2O)6, we selected five conformers of similar energy with different geometries and dipolar moments. For these cases, the cyclic arrangement was found to be the only nonpolar aggregate. For (H2O)8, the most stable structures corresponded to nonpolar, cubic-like, D2d and S4 conformers. Higher energy aggregates exhibit a large spectrum in their polarities. The static polarizability was found to be proportional to the size of the aggregates and presents a weak dependence with the number of hydrogen bonds. In order to examine the influence of thermal fluctuations on the aggregates, we have performed a series of classical molecular dynamics experiments from low temperature up to the melting transition using two different effective pseudopotentials: the TIP4P and MCY models. Minimum energy structures for both classical potentials were found to reproduce reasonably well the results obtained using ab initio methods. Isomerization and phase transitions were monitored by following changes in dipole moments, number of hydrogen bonds and Lindemann’s parameter. For (H2O)6 and (H2O)8, the melting transitions were found at Tm≈50 and 160 K, respectively; for both aggregates, we observed premelting transitions between well differentiated conformers as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.