Abstract
The light induced isomerization of retinal protonated Schiff base (RPSB) inside the protein pocket is one of the fastest (<ps) and most stereo-selective photochemical reactions in nature [1]. The ground state structure of the RPSB and its surrounding protein architecture are known to play a central role in this reaction. It has been a longstanding question how each factor individually influences the reaction dynamics. In this context, Anabaena Sensory Rhodopsin (ASR), a recently discovered microbial retinal protein, serves as an ideal system to answer this question as it binds two structural isomers (all-trans and 13-cis) of the RPSB within the same protein constructions in its photocycle. In this work, the photo-isomerization dynamics of the RPSB in ASR has been explored with the help of time resolved coherent Raman techniques like pump-degenerate four-wave-mixing (pump-DFWM) (Fig. 1(a)) and pump-impulsive vibrational spectroscopy (pump-IVS). Both methods report on the structural changes of the RPSB during the photochemical reaction by tracking the transient frequency shifts of the vibrational modes in the excited state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.