Abstract

The inversion and rotation mechanisms for the isomerization of Feringa’s bithioxanthenes existing in two conformations, up/up and up/down, have been calculated at the B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) levels. The inversion mechanism that maintains the double bond nature of the central bond is a classical one but the rotation mechanisms that break the double bond to form a biradical needs to explore the singlet and triplet states. To do this we have removed the four fused phenyl rings of bithioxanthene and calculated at the CASSCF and CASPT2 levels bis(4 H-thiopyran) proving that B3LYP calculations yield reasonable results for the rotation barriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.