Abstract

Quinoidal compounds have great potential utility as high-performance organic semiconducting materials because of their rigid planar structures and extended π-conjugation. However, the existence of E and Z isomers adversely affects the charge-transport properties of quinoidal compounds. In this study, three isomerically pure oxindole-terminated quinoids were developed by introducing chlorine atoms in the quinoidal core. The synthesized quinoids were confirmed to have a Z,Z configuration by means of 1 H NMR spectroscopy, density functional theory calculations, and single-crystal X-ray analysis. Importantly, the strategy of chlorination allowed to maintain low-lying frontier molecular orbital energy levels and ensure favorable intermolecular packing. Consequently, all three quinoidal compounds showed n-type transport characteristics in organic thin-film transistors, with electron mobilities up to 0.35 cm2 V-1 s-1 , which is the highest value reported to date for oxindole-terminated quinoids. Our study can provide new guidelines for the design of isomerically pure quinoids with high electron mobilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.