Abstract

Organic peroxides play a vital role in the formation, evolution, and health impacts of atmospheric aerosols, yet their molecular composition and fate in the particle phase remain poorly understood. Here, we identified, using iodometry-assisted liquid chromatography mass spectrometry, a large suite of isomer-resolved peroxide monomers (C8-10H12-18O5-8) and dimers (C15-20H22-34O5-14) in secondary organic aerosol formed from ozonolysis of the most abundant monoterpene (α-pinene). Combining aerosol isothermal evaporation experiments and multilayer kinetic modeling, bulk peroxides were found to undergo rapid particle-phase chemical transformation with an average lifetime of several hours under humid conditions, while the individual peroxides decompose on timescales of half an hour to a few days. Meanwhile, the majority of isomeric peroxides exhibit distinct particle-phase behaviors, highlighting the importance of the characterization of isomer-resolved peroxide reactivity. Furthermore, the reactivity of most peroxides increases with aerosol water content faster in a low relative humidity (RH) range than in a high RH range. Such non-uniform water effects imply a more important role of water as a plasticizer than as a reactant in influencing the peroxide reactivity. The high particle-phase reactivity of organic peroxides and its striking dependence on RH should be considered in atmospheric modeling of their fate and impacts on aerosol chemistry and health effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call