Abstract

Optimized geometries of all 24 isolated pentagon rule (IPR) abiding isomers of fullerene C84 have been calculated using density-functional theory (DFT) at the B3LYP/6-31G* level. 13C NMR chemical shieldings are obtained employing the gauge-independent atomic orbital method. The calculated chemical shifts are in good agreement with experimental values for isomers 4, 22, and 23, all of which have been experimentally assigned without ambiguity. The calculated NMR spectra allow us to confirm earlier assignment and validate the DFT approach. The previously temporarily assigned isomers D2(II), C2, Cs(a), and Cs(b) are isomers 5, 11, 16, and 14, respectively. Discrepancies exist between the experimental and theoretical NMR spectra for isomers 19 and 24. The predicted NMR spectra for other isomers are also presented. The local geometry is determined largely by connectivity. The relationship between the chemical shift and the π-orbital axis vector (POAV) angle is far from linear, although the chemical shift genera...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.