Abstract

Isoliquiritigenin (ISL) is a flavonoid extracted from licorice root, which is known to serve important antitumor roles in numerous types of cancers; however, its effect on gastric cancer remains to be elucidated. The present study aimed to explore the roles and underlying mechanisms of ISL in MKN28 gastric cancer cells. MKN28 cell proliferation was measured using the Cell Counting Kit‑8 (CCK8) assay. A Transwell assay was used to determine the effects of ISL on the migration and invasion of MKN28 cells. Apoptosis was assessed by flow cytometry, and the expression levels of apoptosis‑, autophagy‑ and signaling pathway‑related proteins were detected by western blot analysis. The results of the CCK8 assay demonstrated that ISL significantly inhibited the proliferation of MKN28 cells (P<0.05). Transwell assays demonstrated that the migration and invasion of MKN28 cells were significantly inhibited following treatment with ISL (P<0.05). Flow cytometric analysis indicated that ISL induced apoptosis of MKN28 cells. In addition, western blot analysis revealed that the ratio of microtubule‑associated proteins 1A/1B light chain 3B (LC3)II/LC3I was upregulated, as was Beclin 1 expression; however, p62 was downregulated following ISL pretreatment, thus suggesting that ISL triggered autophagy in MKN28 cells. In addition, the phosphorylation levels of protein kinase B (AKT) and mammalian target of rapamycin (mTOR) were significantly reduced following ISL treatment. These results indicated that ISL may influence apoptosis and autophagy in MKN28 cells by suppressing the phosphoinositide 3‑kinase/AKT/mTOR signaling pathway. In conclusion, the findings of the present study suggested that ISL may inhibit MKN28 cell proliferation, migration and invasion by inducing apoptosis and autophagy, implying potential as a therapeutic agent for gastric cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.