Abstract

Ethnopharmacologic relevanceLicorice is a traditional Chinese medicine that has been used for cardiovascular diseases. Recent studies found that supplementation with licorice extracts attenuated the development of atherosclerosis (AS) in hypercholesterolemic patients. Many studies have shown that licorice flavonoids, the main active components of licorice, have a variety of pharmacological effects, including anti-inflammation, regulation of lipid metabolism, and antioxidation. However, the key active components against AS in licorice flavonoids are still unclear. Aim of the studyThe aim of this paper is to investigate the active components of licorice flavonoids that exert anti-atherosclerotic effects and the underlying mechanisms. Materials and methodsNetwork pharmacology was used to screen the active components of licorice flavonoids that have anti-atherosclerotic effects. Combining bioinformatics analysis and in vitro studies, the effects and underlying mechanisms of the active component isoliquiritigenin (ISL) on cell pyroptosis were further investigated in tumor necrosis factor (TNF)-α-treated human umbilical vein endothelial cells (HUVECs). ResultsWe constructed a compound-target network and screened 3 active components, namely, ISL, glabridin, and naringenin in licorice flavonoids. The half maximal effective concentration values of these 3 components suggested that ISL was the key active component against TNF-α-induced endothelial cell injury. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that ISL could potentially treat AS via the nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathway. An in vitro study verified that ISL suppressed TNF-α-induced NLRP3 activation and pyroptosis in HUVECs. The molecular docking and cellular thermal shift assay showed good compatibility between ISL and class III histone deacetylase sirtuin 6 (SIRT6). Moreover, we found that ISL upregulated the expression of SIRT6 in TNF-α-treated HUVECs. Further study found that SIRT6 knockdown reduced the inhibitory effect of ISL on pyroptosis, whereas the NLRP3 inhibitor reversed this process in TNF-α-treated HUVECs. ConclusionsOur results demonstrate that ISL is a key active component of licorice flavonoids. ISL attenuates NLRP3-mediated vascular endothelial cell pyroptosis via SIRT6, and SIRT6 may be a potential target of ISL for the treatment of AS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.