Abstract
We previously reported that a chloroform extract of Caesalpinia sappan L. induces apoptosis in oral cancer cells but not in normal epithelial cell lines. In the present study, we explored the effects of a single compound isolated from C. sappan heartwood, isoliquiritigenin 2′-methyl ether (ILME), on cultured primary and metastatic oral cancer cell lines using MTT assays, fluorescence microscopy, flow cytometry, and Western blotting. ILME inhibited the growth of the oral cancer cells in a time- and dose-dependent manner. The major mechanism of growth inhibition was apoptosis induction, as shown by flow cytometric analysis of sub-G 1-phase arrest and by annexin V-FITC and propidium iodide staining. ILME time-dependently activated NF-κB transcription factors, phospholated the MAP kinases JNK (c-Jun N-terminal kinase) and ERK (extracellular signal-regulated kinase). Furthermore, ILME treatment upregulated HO-1 expression though activation of Nrf2 (NF-E2-related factor 2) pathway, and induced the expression of heme oxygenase-1 (HO-1). Tin protoporphyrin, an HO-1 inhibitor, dose-dependently attenuated the growth-inhibitory effect of ILME and blocked ILME-induced expression of the p21 and p53 cell cycle-regulatory proteins. These results provide the first evidence that the anti-oral cancer effects of ILME may involve a mechanism in which HO-1 is upregulated via a pathway involving MAP kinases, NF-κB, and Nrf2. Thus, ILME could be considered to be a potential chemotherapeutic target for anti-oral cancer treatment strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.