Abstract

BackgroundAP2/ERF transcription factors are involved in the regulation of plant growth, development, and stress responses. Our research objective was to characterize novel apple (Malus × domestica Borkh.) genes encoding AP2/ERF transcription factors involved in regulation of plant growth, development, and stress response. The transcriptional level of apple AP2/ERF genes in different tissues and under various biotic and abiotic stress was determined to provide valuable insights into the function of AP2/ERF transcription factors in apple.MethodsThirty full-length cDNA sequences of apple AP2/ERF genes were isolated from ‘Zihong Fuji’ apple (Malus × domestica cv. Zihong Fuji) via homologous comparison and RT-PCR confirmation, and the obtained cDNA sequences and the deduced amino acid sequences were analyzed with bioinformatics methods. Expression levels of apple AP2/ERF genes were detected in 16 different tissues using a known array. Expression patterns of apple AP2/ERF genes were detected in response to Alternaria alternata apple pathotype (AAAP) infection using RNA-seq with existing data, and the expression of apple AP2/ERF genes was analyzed under NaCl and mannitol treatments using qRT-PCR.ResultsThe sequencing results produced 30 cDNAs (designated as MdERF3-8, MdERF11, MdERF16-19, MdERF22-28, MdERF31-35, MdERF39, MdAP2D60, MdAP2D62-65, and MdRAV2). Phylogenetic analysis revealed that MdERF11/16, MdERF33/35, MdERF34/39, and MdERF18/23 belonged to groups A-2, A-4, A-5, and A-6 of the DREB subfamily, respectively; MdERF31, MdERF19, MdERF4/25/28/32, MdERF24, MdERF5/6/27, and MdERF3/7/8/17/22/26 belonged to groups B-1, B-2, B-3, B-4, B-5, and B-6 of the ERF subfamily, respectively; MdAP2D60 and MdAP2D62/63/64/65 belonged to the AP2 subfamily; and MdRAV2 belonged to the RAV subfamily. Array results indicated that 30 apple AP2/ERF genes were expressed in all examined tissues to different degrees. RNA-seq results using previously reported data showed that many members of the apple ERF and DREB subfamilies were induced by Alternaria alternate apple pathotype (AAAP) infection. Under salt treatment, many members in the apple ERF and DREB subfamilies were transcriptionally up or down-regulated. Under mannitol treatment, many members of the apple ERF, DREB, and AP2 subfamilies were induced at the transcriptional level. Taken together, the results indicated that the cloned apple AP2/ERF genes were expressed in all examined tissues. These genes were up-regulated or down-regulated in response to AAAP infection and to salt or mannitol treatment, which suggested they may be involved in regulating growth, development, and stress response in apple.

Highlights

  • AP2/ERF is one of the large transcription factor families in plants that is involved in many biological processes, such as plant growth, development, and environmental stress (Chuck et al, 2002; Aharoni et al, 2004; Broun et al, 2004; Mizoi, Shinozaki & Yamaguchi-Shinozaki, 2012)

  • Proteins MdERF11/16, MdERF33/35, MdERF34/3, and MdERF18/23 were clustered into groups A-2, A-4, A-5, and A-6 in the DREB subfamily, respectively

  • MdERF31, MdERF19, MdERF4/25/28/32, MdERF24, MdERF5/6/27, and MdERF3/7/8/17/22/26 were clustered into groups B1, B-2, B-3, B-4, B-5, and B-6 in the ERF subfamily, respectively

Read more

Summary

Introduction

AP2/ERF is one of the large transcription factor families in plants that is involved in many biological processes, such as plant growth, development, and environmental stress (Chuck et al, 2002; Aharoni et al, 2004; Broun et al, 2004; Mizoi, Shinozaki & Yamaguchi-Shinozaki, 2012). The AP2/ERF family is divided into three subfamilies (AP2, ER, and RAV) based on the similarity of amino acid sequences and number of conserved domains (Nakano et al, 2006). AP2/ERF transcription factors are involved in the regulation of plant growth, development, and stress responses. Our research objective was to characterize novel apple (Malus × domestica Borkh.) genes encoding AP2/ERF transcription factors involved in regulation of plant growth, development, and stress response. Array results indicated that 30 apple AP2/ERF genes were expressed in all examined tissues to different degrees. RNA-seq results using previously reported data showed that many members of the apple ERF and DREB subfamilies were induced by Alternaria alternate apple pathotype (AAAP) infection. Many members of the apple ERF, DREB, and AP2 subfamilies were induced at the transcriptional level. The results indicated that the cloned apple AP2/ERF genes were expressed in all examined tissues

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call