Abstract

Abstract Background A total of 30 endophytic fungi (AAP-PS 1–30) were isolated from the medicinal herb Phyllanthus amarus and screened for the production of Trichothecinol-A. Out of all the endophytic strains screened for Trichothecinol-A production, the culture filtrate of AAP-PS-1 extracted with ethyl acetate yielded Trichothecinol-A extracellularly in appreciable amounts. Trichothecinol-A was purified, quantified and completely characterized by different standard chromatographic and spectroscopic techniques including reverse phase HPLC, 1D and 2D NMR spectroscopy, etc. The compound was tested for antifungal activity against filamentous fungi and yeast, apoptotic activity against B16F10 cells, anticancer activity against MDA-MB-231, HeLa and B16F10 cells as well as antimetastatic activity against MDA-MB-231 cell line. Results The endophyte producing Trichothecinol-A was identified as Trichothecium sp. by morphological, cultural and molecular methods. RP-HPLC analyses performed on a Waters model using a C18 symmetry pack column with a flow rate of 0.5 ml/min and the eluting compounds were detected by a dual mode wavelength detector set at 220 nm and 240 nm. The 1D (1H, 13C) and 2D NMR (COSY, NOESY, TOCSY, DEPT, 13C–1H HMBC, 13C–1H HSQC), ESI-MS, HRMS, IR and UV–vis show conclusively that the isolated compound was Trichothecinol–A. One liter of Trichothecium sp. yielded 4.37 mg of Trichothecinol-A. Trichothecinol-A exhibited antifungal activity against Cryptococcus albidus (NCIM 3372) up to 20 μg/ml. Cytotoxicity studies indicate that Trichothecinol-A causes 50% cell death at 500nM concentration in HeLa and B16F10 cells and induces apoptosis in later. Inhibition of wound migration assay performed on MDA-MB-231 cells reveals that 500nM of Trichothecinol-A was able to inhibit wound migration by 50% indicating its remarkable antimetastatic property. Conclusion The compound Trichothecinol-A has previously been isolated from Trichothecium roseum and characterized by various standard techniques. Anti-cancer studies conducted on Trichothecinol-A showed that it significantly inhibits cancer cell migration and can thus be developed as a new class of anti-metastatic drug. Here, we for the first time report the anti-metastatic as well as anti-fungal activity exhibited by Trichothecinol-A isolated by us from the endophytic fungus Trichothecium sp. of medicinal plant Phyllanthus amarus. Trichothecinol-A also exhibited apoptotic activity.

Highlights

  • A total of 30 endophytic fungi (AAP-PS 1–30) were isolated from the medicinal herb Phyllanthus amarus and screened for the production of Trichothecinol-A

  • Purification and identification of endophytic fungus producing Trichothecinol-A Total thirty endophytic fungi were isolated from leaves and stems of P. amarus and only one culture (AAPPS-1) isolated from leaves was found to produce Trichothecinol-A extracellularly

  • The analysis of sequence revealed 99.9% identity with that of Trichothecium roseum. Phylogenetic analysis of this strain AAP-PS-1 based on ITS sequences exhibited 98% nucleotide sequence similarity with Trichothecium roseum, the phylogenetically closest validated genus (Figure 1)

Read more

Summary

Introduction

A total of 30 endophytic fungi (AAP-PS 1–30) were isolated from the medicinal herb Phyllanthus amarus and screened for the production of Trichothecinol-A. Endophytes hold tremendous promise as an alternative eco-friendly source for efficiently producing valuable bioactive compounds in the future with varied applications in both the research and applied fields of medicine, food industry, agriculture, pest management, etc. Trichothecenes are a vast group of structurally and chemically related mycotoxins which have a strong impact on the health and well-being of humans, plants and farm animals These mycotoxins are complex sesquiterpene secondary metabolites produced by fungi belonging to various species of Fusarium, Trichothecium, Trichoderma, Myrothecium, Cephalosporium, Stachybotrys, etc. These mycotoxins are highly stable even during the milling, processing and cooking of food stuffs and it’s very difficult to get rid of them [4,5]. It is these trichothecenes which are responsible for the toxicity and spoilage of grains, fruits, vegetables, tubers and other vegetative products worldwide

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call