Abstract
Bridge structures are usually built on irregular topographical surfaces which create substructures with different pier heights and non uniform stiffness distribution. Three irregularity types of typical reinforced concrete (RC) medium length bridges located in a high seismicity zone of Mexico, were analyzed aimed at determining the best strength and stiffness parameters of an isolation system. The isolation system is composed by lead rubber bearings (LRB) located on each pile and abutment. The variation of the bridge characteristics and the isolation parameters produced 169 models that were subjected to ten seismic records representative of the subduction zone in the Pacific Coast of Mexico. A total of 1690 nonlinear time history analyses (NLTHA) were carried out in longitudinal and transverse directions of the structures. The maximum pier drifts, bending moments and shear forces demands were analyzed to identify the best isolation properties for reducing the concentration of damage in one or two elements and for improving the structural behavior of irregular bridges. Additionally, the analysis of the seismic response of the bridges supported on traditional neoprene bearings was carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.