Abstract

Trypanosomatid parasites of the genus Leishmania cause a spectrum of widespread tropical diseases. In the vertebrate host they reside within the macrophage phagolysosome; however, the mechanisms employed in this remarkable survival strategy are not well understood. Recent advances in the molecular genetics of these parasites prompted us to develop methods of functional genetic complementation in Leishmania and apply them to the isolation of genes involved in the biosynthesis of the virulence determinant lipophosphoglycan, an abundant glycosyl-phosphatidylinositol-anchored polysaccharide. LPG1, the gene product identified by complementation of the R2D2 mutant, appears to be a glycosyltransferase responsible for the addition of galactofuranosyl residues to the nascent lipophosphoglycan chain. As galactofuranose is not found in mammalian cells, inhibition of the addition of this sugar could be exploited for chemotherapy. Overall, the success of the functional complementation approach opens the way to the identification of a variety of genes involved in pathogenesis and parasitism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.