Abstract

The present research focused on the isolation of the major compound in Illicium verum Hook.f. fruit and exploring its potential as an inhibitor of Plasmodium falciparum through computational approach, molecular docking and dynamic simulation. Verimol G was successfully extracted from the ethyl acetate extract for the first time from fruit. A successful prediction of the preferred orientation of the ligand to the receptor has been determined by the docking molecular approach. A molecular dynamics simulation was also conducted to study the dynamic behaviour of verimol G in relation to wild-type P. falciparum dihydrofolate reductase (PfDHFR). The free binding energy analyses (ΔGbind) of verimol G-PfDHRF was found to be -8.07 kcal mol-1. The decomposition energy results (ΔGbindresidue) showed that there were seven key binding residues which stabilized the binding of verimol G. The anticipated data could potentially serve as valuable insights for the advancement and formulation of an antiplasmodial medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call