Abstract

Liquid water saturation profiles were determined using high resolution neutron radiography for commercially available fuel cell materials and hardware. Temperature, pressure, and relative humidity (concentration) gradients were imposed on the cell to determine individual influences on water content for each gradient. The asymmetric anode/cathode channel/land architecture used in this work results in significant water accumulation in the anode diffusion media with saturation values of up to ∼50%. Anode water content was found to change substantially with imposed pressure or concentration gradient, whereas the cathode saturation profile remained relatively consistent, indicating the channel/land ratio and thickness have a determinant role in diffusion media retention. The data generated in this work has been made publicly available through www.pemfcdata.org, and should be useful for computational modelers seeking validation data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.