Abstract
One major function of DNA topoisomerase I in Escherichia coli is to repress R-loop formation during transcription elongation, which may otherwise inhibit cell growth. We have previously shown that the growth problems of topA mutants can be corrected by overproducing RNase H, an enzyme that degrades the RNA moiety of an R-loop. The goal of the present study was to identify other potential regulators of R-loop formation. To this end, we have screened for multicopy suppressors of topA null mutations. As expected using this procedure, we cloned the rnhA gene encoding RNase H. In addition, we also identified the topB gene encoding DNA topoisomerase III as an efficient suppressor of topA null mutations and, hence, of R-loop formation. We show that DNA topoisomerase III is able to relax transcription-induced negative supercoiling both in vitro and in vivo. An R-loop is also shown to be a hot-spot for relaxation by DNA topoisomerase III, and we found that R-loop-dependent hypernegative supercoiling can be prevented by the activity of this topoisomerase in vivo. It is also shown that the topB gene can act synergistically with the rnhA gene to correct the growth defect of topA null mutants efficiently. This synergistic effect can be explained by the fact that some R-loops must not be degraded in order for the RNA to be available for protein synthesis. Topoisomerase III can presumably repress the formation of such R-loops or cause their destabilization to prevent RNA degradation. This is supported by the fact that overproduction of this topoisomerase corrects the negative effect of overexpressing RNase H activity on the growth of topA null mutants at low temperatures. Moreover, the fact that DNA topoisomerase III does not relax global supercoiling supports our previous conclusion that R-loop formation, and therefore the essential function of DNA topoisomerase I, involves local, rather than global, supercoiling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.