Abstract

Li-ion battery mishaps are primarily attributed to short circuits, which missed early detection. In this study, a method is introduced to address this issue by analyzing the voltage relaxation, after initiating a rest period. The voltage equilibration arising from solid-concentration profile relaxation is expressed by a double-exponential model, whose time constants, τ1& τ2, capture the initial, rapid exponential contour and the long-term relaxation, respectively. By tracking τ2, which is very sensitive to small leakage currents, it is possible to detect a short early on and estimate the short resistance. This method, validated with experiments on commercial batteries induced with short circuits of varying extents, has >90% prediction accuracy and enables clear differentiation between different short severities, while factoring in the influence of temperature, state of charge (SOC), state of health (SOH), and idle currents. The method is applicable across different battery chemistries and form factors, offering precise and robust nascent-stage short detection-estimation for on-device implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.