Abstract

The apical and basal-lateral plasma membranes of toad bladder epithelium were radio-iodinated with the glucose-glucose oxidase-lactoperoxidase system. The covalently bound radio iodine was used as a marker during subcellular fractionation and membrane isolation. Homogenization conditions that ensured rupture of more than 80% of the cells without substantial nuclear damage were defined by Normarski optics. The nuclei were separated by differential centrifugation and the apical and basal-lateral components were resolved by differential and sucrose density gradient centrifugation. The apical components yielded two radioactive bands that were identified as glycocalyx and plasma membrane labeled with 125I. The basal-lateral components yielded a hetero-disperse pattern made up of at least 3 radioactive bands, but the bulk of the activity of ouabain-sensitive ATPase comigrated with only one of these bands. The mitochondia, identified by assays for cytochrome oxidase and NADH cytochrome c reductase activities, were separated from the radio-iodine labeled by centrifugation in sucrose density gradients under isokinetic conditions. The labeled glycocalyx and the slowly migrating components of basal-lateral labeling were separated from the radio-iodinated membranes by centrifugation at 100,000 x g x 1 hr after removal of the mitochrondria by the isokinetic method. The labeled membranes were then subjected to ultracentrifugation in sucrose density gradients under isopycnic conditions; the basal-lateral membranes containing ouabain-sensitive ATP-ase were well resolved from the apical membranes by this method. These results provide a relatively rapid method of attaining partial purification of the apical and basal-lateral plasma membranes of toad bladder epithelium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call